Crystal structures of E. coli laccase CueO at different copper concentrations.

نویسندگان

  • Xu Li
  • Zhiyi Wei
  • Min Zhang
  • Xiaohui Peng
  • Guangzhe Yu
  • Maikun Teng
  • Weimin Gong
چکیده

CueO protein is a hypothetical bacterial laccase and a good laccase candidate for large scale industrial application. Four CueO crystal structures were determined at different copper concentrations. Low copper occupancy in apo-CueO and slow copper reconstitution process in CueO with exogenous copper were demonstrated. These observations well explain the copper dependence of CueO oxidase activity. Structural comparison between CueO and other three fungal laccase proteins indicates that Glu106 in CueO constitutes the primary counter-work for reconstitution of the trinuclear copper site. Mutation of Glu106 to a Phe enhanced CueO oxidation activity and supported this hypothesis. In addition, an extra alpha-helix from Leu351 to Gly378 covers substrate biding pocket of CueO and might compromises the electron transfer from substrate to type I copper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and function of the engineered multicopper oxidase CueO from Escherichia coli--deletion of the methionine-rich helical region covering the substrate-binding site.

CueO is a multicopper oxidase (MCO) that is involved in the homeostasis of Cu in Escherichia coli and is the sole cuprous oxidase to have ever been found. Differing from other MCOs, the substrate-binding site of CueO is deeply buried under a methionine-rich helical region including alpha-helices 5, 6, and 7 that interfere with the access of organic substrates. We deleted the region Pro357-His40...

متن کامل

New insights into the catalytic active-site structure of multicopper oxidases.

Structural models determined by X-ray crystallography play a central role in understanding the catalytic mechanism of enzymes. However, X-ray radiation generates hydrated electrons that can cause significant damage to the active sites of metalloenzymes. In the present study, crystal structures of the multicopper oxidases (MCOs) CueO from Escherichia coli and laccase from a metagenome were deter...

متن کامل

Spore-coat laccase CotA from Bacillus subtilis: crystallization and preliminary X-ray characterization by the MAD method.

Bacterial endospores are highly resistant structures that allow survival for long periods of time in adverse environments. The spore-forming Gram-positive bacterium Bacillus subtilis synthesizes a coat around the endospore during development composed of several assembled polypeptides. The role of these components of the spore coat remains unclear; however, some of them appear to be enzymes poss...

متن کامل

Linkage between catecholate siderophores and the multicopper oxidase CueO in Escherichia coli.

The multicopper oxidase CueO had previously been demonstrated to exhibit phenoloxidase activity and was implicated in intrinsic copper resistance in Escherichia coli. Catecholates can potentially reduce Cu(II) to the prooxidant Cu(I). In this report we provide evidence that CueO protects E. coli cells by oxidizing enterobactin, the catechol iron siderophore of E. coli, in the presence of copper...

متن کامل

The multi-copper-ion oxidase CueO of Salmonella enterica serovar Typhimurium is required for systemic virulence.

Salmonella enterica serovar Typhimurium possesses a multi-copper-ion oxidase (multicopper oxidase), CueO (also known as CuiD), a periplasmic enzyme known to be required for resistance to copper ions. CueO from S. Typhimurium was expressed as a recombinant protein in Escherichia coli, and the purified protein exhibited a high cuprous oxidase activity. We have characterized an S. Typhimurium cueO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 354 1  شماره 

صفحات  -

تاریخ انتشار 2007